Depletion effects in smectic phases of hard-rod-hard-sphere mixtures
نویسندگان
چکیده
منابع مشابه
Stability of smectic phases in hard-rod mixtures.
Using density-functional theory, we have analyzed the phase behavior of binary mixtures of hard rods of different lengths and diameters. Previous studies have shown a strong tendency of smectic phases of these mixtures to segregate and, in some circumstances, to form microsegregated phases. Our focus in the present work is on the formation of columnar phases which some studies, under some appro...
متن کاملOrientational and phase-coexistence behaviour of hard rod-sphere mixtures
Results are presented from Monte Carlo simulations of bulk mixtures of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadths of the rods. For sphere number-concentrations of 50% and lower, compression of the isotropic fluid results in formation of a homogeneous (i.e. compositionally mixed) nematic phase. The volume fraction of this iso...
متن کاملDepletion potential in hard-sphere mixtures: theory and applications
We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. For the standard situation of a single big particle immersed in a sea of small particles near a fixed object, the system is regarded as an inhomogeneous binary mixture of big and small particles in the external field of the fixed object, and the limit of vanishing density ...
متن کاملSolvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions
In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...
متن کاملSmectic, nematic, and isotropic phases in binary mixtures of thin and thick hard spherocylinders.
A second-virial Onsager theory, based on Parsons-Lee rescaling and suitably extended to deal with multicomponent systems and smectic phases, has been used to calculate the phase diagram of a collection of binary mixtures of thin and thick hard spherocylinders. In particular, two types of phase diagrams are investigated. First, a number of binary mixtures where the two components have the same t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal E
سال: 2006
ISSN: 1292-8941,1292-895X
DOI: 10.1140/epje/i2006-10058-4